718 research outputs found

    Topological entropy and blocking cost for geodesics in riemannian manifolds

    Full text link
    For a pair of points x,yx,y in a compact, riemannian manifold MM let nt(x,y)n_t(x,y) (resp. st(x,y)s_t(x,y)) be the number of geodesic segments with length ≤t\leq t joining these points (resp. the minimal number of point obstacles needed to block them). We study relationships between the growth rates of nt(x,y)n_t(x,y) and st(x,y)s_t(x,y) as t→∞t\to\infty. We derive lower bounds on st(x,y)s_t(x,y) in terms of the topological entropy h(M)h(M) and its fundamental group. This strengthens the results of Burns-Gutkin \cite{BG06} and Lafont-Schmidt \cite{LS}. For instance, by \cite{BG06,LS}, h(M)>0h(M)>0 implies that ss is unbounded; we show that ss grows exponentially, with the rate at least h(M)/2h(M)/2.Comment: 13 page

    Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces

    Full text link
    We establish the background for the study of geodesics on noncompact polygonal surfaces. For illustration, we study the recurrence of geodesics on ZZ-periodic polygonal surfaces. We prove, in particular, that almost all geodesics on a topologically typical ZZ-periodic surface with boundary are recurrent.Comment: 34 pages, 13 figures. To be published in V. V. Kozlov's Festschrif

    On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces

    Get PDF
    We study the recurrence and ergodicity for the billiard on noncompact polygonal surfaces with a free, cocompact action of Z\Z or Z2\Z^2. In the Z\Z-periodic case, we establish criteria for recurrence. In the more difficult Z2\Z^2-periodic case, we establish some general results. For a particular family of Z2\Z^2-periodic polygonal surfaces, known in the physics literature as the wind-tree model, assuming certain restrictions of geometric nature, we obtain the ergodic decomposition of directional billiard dynamics for a dense, countable set of directions. This is a consequence of our results on the ergodicity of \ZZ-valued cocycles over irrational rotations.Comment: 48 pages, 12 figure

    Insecurity for compact surfaces of positive genus

    Full text link
    A pair of points in a riemannian manifold MM is secure if the geodesics between the points can be blocked by a finite number of point obstacles; otherwise the pair of points is insecure. A manifold is secure if all pairs of points in MM are secure. A manifold is insecure if there exists an insecure point pair, and totally insecure if all point pairs are insecure. Compact, flat manifolds are secure. A standing conjecture says that these are the only secure, compact riemannian manifolds. We prove this for surfaces of genus greater than zero. We also prove that a closed surface of genus greater than one with any riemannian metric and a closed surface of genus one with generic metric are totally insecure.Comment: 37 pages, 11 figure

    Ergodic directions for billiards in a strip with periodically located obstacles

    Get PDF
    We study the size of the set of ergodic directions for the directional billiard flows on the infinite band R×[0,h]\R\times [0,h] with periodically placed linear barriers of length 0<λ<h0<\lambda<h. We prove that the set of ergodic directions is always uncountable. Moreover, if λ/h∈(0,1)\lambda/h\in(0,1) is rational the Hausdorff dimension of the set of ergodic directions is greater than 1/2. In both cases (rational and irrational) we construct explicitly some sets of ergodic directions.Comment: The article is complementary to arXiv:1109.458

    Addendum to: Capillary floating and the billiard ball problem

    Get PDF
    We compare the results of our earlier paper on the floating in neutral equilibrium at arbitrary orientation in the sense of Finn-Young with the literature on its counterpart in the sense of Archimedes. We add a few remarks of personal and social-historical character.Comment: This is an addendum to my article Capillary floating and the billiard ball problem, Journal of Mathematical Fluid Mechanics 14 (2012), 363 -- 38

    Adsorption Way of the Loss of Moon's Atmosphere

    Get PDF
    Theory on gas adsorption by lunar surface to explain loss of lunar atmospher
    • …
    corecore